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Pediatric macrophage activation syndrome, recognizing 
the tip of the Iceberg

Introduction
Macrophage activation syndrome (MAS), a term often used interchangeably with secondary hemophago-
cytic lymphohistiocytosis (sHLH), describes a severe hyperinflammatory reaction, which can be idiopathic 
or triggered by underlying systemic illness (e.g., autoimmune disease, malignancy, infection) that frequent-
ly leads to abnormal hemophagocytic macrophages with associated hypercytokinemia, otherwise known 
as a “cytokine storm.” Unlike primary or familial HLH, which commonly presents during infancy and results 
from homozygous or compound heterozygous mutations in genes involved in the perforin-mediated 
pathway of cytolysis shared by both the innate (i.e., natural killer (NK) cells) and adaptive (i.e., cytotoxic 
CD8 T cells) immune systems (1), MAS can occur at any age and often complicates an underlying systemic 
inflammatory disorder, most commonly systemic juvenile idiopathic arthritis (sJIA) and its adult equivalent, 
adult onset Still’s disease (AOSD). If unrecognized and untreated, MAS can lead to multi-organ failure and 
ultimately death (2-4).

Clinical and laboratory features of MAS include sustained fever, hyperferritinemia, pancytopenia, consump-
tive coagulopathy mimicking disseminated intravascular coagulation, central nervous system dysfunction, 
and elevated liver enzymes. Many of these features complicate co-existing systemic inflammatory disease, 
thus making a diagnosis of MAS difficult (5-9). A majority of clinical data available describes MAS as a com-
plication of sJIA with the prevalence of fulminant MAS in patients with sJIA reported to be about 10%. 
Subclinical MAS, however, may be present in as many as 30%-40% of children with known or suspected 
sJIA (2, 8-10). As MAS becomes more clinically recognized, an increasing frequency of occurrence in other 
systemic inflammatory disorders [i.e., systemic lupus erythematosus (SLE), Kawasaki disease, and periodic 
fever syndromes] has been reported (Figure 1) (11-14). However, we are likely just beginning to recognize 
the tip of the iceberg, as many febrile and hyperferritinemic pediatric and adult hospitalized patients with 
multi-organ failure and systemic inflammation may indeed be suffering from sHLH/MAS, including those 
with frank sepsis (Figure 2) (15-17).
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Abstract

Macrophage activation syndrome (MAS) is the name given to secondary hemophagocytic lympho-
histiocytosis (sHLH) associated with rheumatic diseases. Previously, MAS has been best studied in chil-
dren with systemic juvenile idiopathic arthritis (sJIA), who are at high risk of developing MAS. MAS/
sHLH is a cytokine storm that results in multi-organ system failure and is frequently fatal. Early diagno-
sis and treatment is critical for improving survival. Various diagnostic tools have been developed for 
identifying MAS in the setting of sJIA, as well as for all forms of MAS/sHLH. These are largely based on 
clinical (e.g., fever) and laboratory features (e.g., cytopenias). None are perfectly sensitive and specific, 
however, increasing awareness of this condition is also paramount in making the diagnosis. Rare fa-
milial forms of HLH can also be diagnosed based on homozygous mutation in genes largely involved 
in perforin-mediated cytolytic function of lymphocytes (natural killer cells and CD8 T cells). Intriguing-
ly, heterozygous defects in these same genes are frequently identified in patients with sHLH and MAS. 
Decreased cytolytic function results in prolonged interaction of the lytic lymphocytes and their target 
antigen presenting cells, thus resulting in the pro-inflammatory cytokine storm believed responsible 
for the multi-organ failure. Novel cytokine-targeted therapies are currently being explored for a less 
toxic yet effective alternative to chemotherapeutic approaches to treating children with sHLH/MAS. 
As increased recognition and diagnosis of MAS is on the rise, an earlier and cytokine-targeted ap-
proach to therapy will likely save many lives of children with this disorder.
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Diagnostic criteria
Early identification remains diagnostically chal-
lenging as there is no single pathognomonic 
feature of MAS or even a set of universal di-
agnostic criteria. The clinical similarity of MAS 
and secondary HLH has led some clinicians to 
use the longer-standing HLH-2004 diagnostic 
guidelines, which require 5 of the following 8 
criteria to be met for diagnosis: fever, spleno-
megaly, cytopenias (affecting ≥2 of 3: hemo-
globin<90 g/L, platelets<100×109/L, neutro-
phils<1.0×109/L), hypertriglyceridemia (≥265 
mg/dL) and/or hypofibrinogenemia (≤1.5 g/L), 
hemophagocytosis in bone marrow or spleen 
or lymph nodes, low or absent NK cell activity, 
and ferritin  500 µg/L, and sCD25≥2400 units/

mL (Table 1) (18). While specific but insensitive 
for identifying MAS, strict usage of HLH-2004 
criteria may delay diagnosis in patients with a 
less severe initial presentation (5).

In 2016, an expert consensus panel published a 
set of validated classification criteria to help dis-
tinguish a sJIA flare from MAS. The identification 
of MAS can be made in a febrile patient with sJIA 
or suspected sJIA, who has a serum ferritin level 
>684 ng/mL plus any 2 of the following: platelet 
count ≤181×109/L, aspartate aminotransferase 
(AST)>48 units/L, triglyceride concentration 
>156 mg/dL, or fibrinogen ≤360 mg/dL (Table 
1) (8, 9). These relatively few total criteria are 
routinely readily available and timely. While the 

final MAS criteria for children with sJIA proved to 
have a sensitivity of 0.73 and specificity of 0.99, 
emerging clinical practice data suggest that pa-
tients with known sJIA treated with anti-IL-1 and 
anti-IL-6 biologic agents may have alterations in 
laboratory findings and possibly remain afebrile, 
which subsequently results in a missed diagno-
sis of MAS (19). To date, these criteria are yet to 
be proven to have diagnostic value for other 
autoimmune diseases and remain limited to 
children with known or suspected sJIA, with the 
possible exception of AOSD (3).

The inadequate performance of the MAS clas-
sification criteria in daily clinical practice led to 
a validated, weighted MAS/sJIA (MS) scoring 
system using the original data set from the 
2016 classification criteria. The newer MS scor-
ing system excluded the control sample with 
systemic infection, which had less pronounced 
systemic inflammation and subsequently lab-
oratory values, thus creating an inflation effect 
on the laboratory abnormalities. Central ner-
vous system (CNS) involvement (β-coefficient 
2.44), hemorrhagic manifestations (β-coeffi-
cient 1.54), active arthritis (β-coefficient −1.30), 
platelet count (β-coefficient −0.003), lactate 
dehydrogenase (LDH) (β-coefficient 0.001), 
fibrinogen (β-coefficient −0.004), and ferritin 
(β-coefficient 0.0001) are included in the MS 
score calculation. Each clinical variable is given 
a binary constant of “1” or “0” based on the pres-
ence or absence of the feature and multiplied 
by the respective β-coefficient. Absolute labo-
ratory values are multiplied by the respective 
β-coefficient, and all variables are added for a 
final MS score (Table 1). The sum of the values 
ranges from −8.4 to 41.8 with a cutoff value of 
≥−2.1, yielding a sensitivity of 0.85 and spec-
ificity of 0.95 in discriminating MAS from an 
active sJIA flare (20). While the newer MS scor-
ing system potentially may prove applicable 
to AOSD, it is not intended to be used in other 
pediatric rheumatic diseases.

MAS complicated by other rheumatic diseas-
es is less commonly reported than sJIA. Com-
parison of clinical and laboratory data from 38 
juvenile SLE patients with definite or probable 
MAS to controls suggests that with the excep-
tion of fever, the other clinical features (i.e., 
CNS involvement, hemorrhage, hepatomega-
ly, splenomegaly) have better specificity than 
sensitivity in distinguishing MAS from an active 
SLE flare. Preliminary diagnostic guidelines for 
MAS as a complication of juvenile SLE requires 
1 clinical feature (i.e., fever, CNS involvement, 
hepatomegaly, splenomegaly, hemorrhage) 
and 2 laboratory criteria, which includes cyto-
penia affecting≥2 cell lines (i.e., hemoglobin 
≤90 g/L, platelets≤150×109/L, white blood 
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Main Points
•	 Macrophage activation syndrome (MAS) 

and the related condition of secondary 
hemophagocytic lymphohistiocytosis 
(sHLH) are the result of “cytokine storms”, 
leading to multi-organ system failure 
and frequently death.

•	 Novel diagnostic criteria are being de-
veloped for the timelier recognition of 
MAS/sHLH to allow for earlier treatment 
and improved outcomes.

•	 Many children with MAS/sHLH possess 
heterozygous mutations in cytolytic 
pathway proteins present as homozy-
gous defects in children with familial 
forms of HLH, thus sharing a similar 
pathophysiology in many cases.

•	 Cytokine-targeted approaches (e.g., IL-1, 
IFNγ) are being explored for safer yet ef-
fective therapies for children with MAS/
sHLH.

Figure 1. Macrophage Activation Syndrome (MAS), Hemophagocytic Lymphohistiocytosis 
(HLH), Cytokine Storm Syndrome publications excluding review articles, as cited in PUBMED and 
grouped by decade.

Figure 2. Recognizing the tip of the HLH/
MAS iceberg which may include many febrile, 
hyperferritinemic, hospitalized patients with 
multi-organ dysfunction syndrome, systemic 
inflammatory response syndrome, and nega-
tive and positive sepsis cultures.



cells (WBC)≤4.0×109/L), hypertriglyceridemia 
(≥178 mg/dL) and/or hypofibrinogenemia 
(≤1.5 g/L), AST>40 units/L, increased LDH>567 
units/L, hyperferritinemia ≥500 µg/L, or evi-
dence of macrophage hemophagocytosis in 
the bone marrow aspirate (Table 2) (14). These 
proposed guidelines are based on a small sam-
ple size with a limited control group and have 
not been validated. The clinical utility of the 
Parodi et al. (14) diagnostic criteria for MAS in 
juvenile SLE remains unclear.

Hemophagocytosis, defined as the engulfment 
of blood cells [e.g., red blood cells (RBC), WBC, 
platelets] by macrophages has been widely 
associated with the development of MAS in 
patients with sJIA and other rheumatologic 
diseases (8, 9, 14, 21, 22). Histopathology may 
reveal characteristic increased hemophagocyt-
ic activity in the bone marrow, liver, and spleen 

with positive CD163 (histiocyte) staining, al-
though hemophagocytosis may not be present 
in the initial stages and is neither sensitive nor 
specific for MAS (1, 23, 24). Detection of acti-
vated lymphocytes and hemophagocytosis by 
other means, including serum laboratory tests, 
includes soluble interleukin 2 receptor alpha 
chain (sCD25) and soluble CD163 (sCD163), 
a high affinity scavenger receptor for hemo-
globin-haptoglobin complexes. Both of these 
parameters may be elevated, which suggests 
that sCD25 and sCD163 may be more sensitive 
in the detection of MAS. These tests are only 
performed at select sites, making them costly 
with a long turnaround time for results, thus 
leading to a delay in diagnosis and ultimately 
treatment (25, 26).

In the absence of a gold-standard diagnostic 
test and overlap of underlying disease man-

ifestations and MAS, the HScore utilizes a 
scoring system comprised of 9 variables [i.e., 
3 clinical (fever, known underlying immuno-
suppression, and organomegaly), 5 biologic 
(triglyceride level, ferritin, AST, fibrinogen, 
and cytopenia), and 1 histopathologic (i.e., 
hemophagocytosis on bone marrow aspi-
rate)] (Table 1). Each variable is further strat-
ified based on the level range, assigning a 
numerical value ranging from 0 to 64 to each 
variable for a maximum of 250. Fardet et al. 
(27) found that a score of 169 corresponded 
to a sensitivity of 93% and specificity of 86%, 
proving to be 90% accurate in correctly diag-
nosing sHLH. These criteria were developed 
in adults, many with oncologic conditions, 
and their ease and utility in pediatric sHLH/
MAS is unknown. A simpler and timely set of 
criteria of sHLH in a broad array of disorders 
is needed.
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Table 1. Comparison of diagnostic criteria for Macrophage Activation Syndrome (MAS)/Secondary Hemophagocytic Lymphohistiocytosis (sHLH)

Parameter	 HLH-2004	 2016 sJIA/MAS	 MAS/sJIA Score	 H score

Fever °C	 ≥38.5	 Degree not specified	 ---	 0 (<38.4), 33 (38.4–39.4), of 49  
				    (>39.4)

Ferritin 	 ≥ 500 µg/L	 > 684 ng/mL	 0.0001*serum level	 0 (<2,000), 2,000–6,000), or 50  
				    (>6,000)

Organomegaly	 Splenomegaly	 ---	 ---	 0 (no), 23 (hepato- or splenomegaly),  
				    38 (both)

Hematology	 affecting ≥ 2 of 3#	 platelets≤181×109/L	  −0.003*platelet count	 0 (one lineage), 24 (2 lineages), or  
				    34 (3 lineages)%

Hemorrhagic Manifestations	 ---	 ---	 1.54*1(yes) or *0(no)	 ---

Triglyceride Level 	 ≥ 265 mg/dL	 > 156 mg/dL	 ---	 0 (<1.5 mmol/L), 44 (1.5–4 mmol/L),  
				    or 64 (>4 mmol/L)

Fibrinogen Level	 ≤ 1.5 g/L	 ≤ 360 mg/dL 	  −0.004*serum level	 0 (>2.5 g/L) or 30 (≤2.5 g/L)

Lactate Dehydrogenase Level	 ---	 ---	 0.001*serum level	 ---

Aspartate Aminotransferase (AST)	 ---	 > 48 units/L	 ---	 0 (<30 IU/L) or 19 (≥30 IU/L)

CNS Involvement	 ---	 ---	 2.44*1(yes) or *0(no)	 ---

Active Arthritis	 ---	 ---	  −1.3*1(yes) or *0(no)	 ---

Known immunosuppression	 ---	 ---	 ---	 0 (no) or 18 (yes)

Histopathology	 hemophagocytosis 	 ---	 ---	 Hemophagocytosis in bone marrow: 
	 in bone marrow or 			   0 (no) or 35 (yes) 
	 spleen or lymph nodes

Natural killer (NK) cell activity	 low or absent	 ---	 ---	 ---

sCD25 	 ≥ 2400 units/mL	 ---	 ---	 ---

Diagnosis	 5 of 8 criteria met	 Fever in known or 	 Sum of parameters	 Sum of parameters ≥169 
		  suspected sJIA + 	 ≥ −2.1 
		  Ferritin + 2 of the  
		  remaining 4 

#hemoglobin<90 g/L, platelets<100×109/L, neutrophils <1.0×109/L; %hemoglobin<92 g/L, platelets<110×109/L, leukocytes <5.0×109/L; MAS, macrophage activation syndrome; HLH, 
hemophagocytic lymphohistiocytosis; sJIA, systemic juvenile idiopathic arthritis; *multiplication (e.g., 0.0001 times platelet count).



With this in mind, a significant rise in serum 
ferritin (e.g., >10,000 ng/mL) in the setting of a 
hospitalized febrile patient is an inexpensive, 
rapid screening tool for MAS (28). With a cut-
off value of ≥ 627 ng/mL for screening with 
a set sensitivity (0.95), the ferritin level alone 
had a specificity of 0.89 in identifying cases of 
all-cause MAS as compared to febrile hospi-
talized children (29). In combination with the 
erythrocyte sedimentation rate (ESR), the fer-
ritin to ESR ratio has been shown to be both 
sensitive and specific in distinguishing MAS in 
sJIA from an active sJIA flare (29, 30). The ESR 
may initially be elevated but can drop rath-
er quickly and be surprisingly low with MAS. 
Consumptive coagulopathy, a hallmark fea-
ture of MAS, leads to fibrinogen degradation 
and results in a drop in ESR (31-33). Unlike in 
other systemic inflammatory diseases, a com-
bination of a high serum ferritin and low ESR 
may help confirm a diagnosis of MAS. Gorelik 
et al. (30) reported 100% sensitivity and speci-
ficity with a ratio of 80 in a small cohort of sJIA 
patients. Recently, Eloseily et al. (29) found, 
using 2 larger cohorts, a ferritin to ESR ratio 
of 21.5 (ng/mL divided by mm/hr) was 82% 
sensitive and 78% specific for diagnosing MAS 
in sJIA compared to active sJIA without MAS. 
The ferritin to ESR ratio shows promise as a 
generalizable, inexpensive, and rapid screen-
ing calculation that may lead to an earlier di-
agnosis and ultimately more timely initiation 
of treatment in MAS, thereby improving over-
all patient outcomes.

Genetics
The clinical and etiologic overlap between 
MAS and fHLH is significant, and includes 
an increased prevalence of heterozygous 
mutations in known fHLH genes found in 
MAS patients. Defects in the perforin-medi-
ated cytolytic pathway result in an inability 
of cytolytic lymphocytes to lyse the infected 
antigen presenting cell (APC), which sub-
sequently results in a prolonged cell-to-cell 
interaction causing a pro-inflammatory cyto-
kine storm that ultimately leads to the clin-
ical sequelae seen in MAS (34, 35). Hetero-
zygous mutations in fHLH genes (e.g., PRF1, 
LYST, RAB27A, UNC13D, STXBP2, STX11) may be 
found in as high as 40% of patients with MAS 
(36, 37). This is likely significantly higher than 
the reported combined rates of these mu-
tations (~15%) in the general population or 
disease control groups (38). As in adult onset 
HLH, heterozygous mutations in fHLH genes 
may also contribute to lymphoma develop-
ment (39, 40). As in fHLH, these heterozygous 
hypomorphic and dominant-negative gene 
mutations can alter cytolytic function in NK 
cells and CD8 T cells (38). Using a threshold 
model of disease (41), a combination of a 
chronic inflammatory state, such as in sJIA or 
SLE, with a genetic predisposition, and/or a 
triggering infection may result in fatal MAS 
or sHLH as evidenced in the increased per-
centages of PRF1 and UNC13D heterozygous 
mutations in cohorts of sJIA patients who 
develop MAS (42, 43).

In addition to defects in the perforin-mediated 
cytolytic pathway, there are other mechanisms 
by which genetic mutations can trigger MAS 
and directly affect cells (e.g., macrophages and 
dendritic cells) of the innate immune system 
by altering cytokine production via the inflam-
masome complex (44). Gain of function muta-
tions, as seen in Familial Mediterranean Syn-
drome (FMF), result in hyperactivation of the 
NLRC4 inflammasome which can in turn result 
in MAS. NLRC4 triggers the inflammasome, 
an innate immune complex that responds 
via caspase-1 activation and IL-1β and IL-18 
secretion (45, 46). Moreover, rare activating 
mutations in NLRC4 itself can lead to an au-
toinflammatory disorder complicated by high 
IL-18 levels and clinical MAS (47). Although 
the mechanisms have not been worked out 
as clearly, there are other gene mutations as-
sociated with MAS/HLH. These include genes 
involved metabolism (e.g., SLC7A7), autophagy 
(e.g., NEMO), and viral control (e.g., CD27) (48). 
For many patients, the combination of a genet-
ic predisposition, an underlying inflammatory 
state, and a triggering agent (e.g., infection) 
likely contribute to the cytokine storm seen in 
MAS (41).

Pathophysiology / Immunology
The acute phase of MAS is often associated 
with markedly elevated levels of pro-inflam-
matory cytokines like interferon-gamma (IFNγ), 
which are thought to be the primary drivers of 
pro-inflammatory (M1) macrophages (33, 49). 
The working hypothesis suggests that mac-
rophages produce an array of cytokines, no-
tably tumor necrosis factor (TNF) and various 
interleukins (i.e., IL-6, IL-1, and IL-18), which 
trigger a cascade of inflammatory pathways 
and ultimately create a cytokine storm (49). 
The pro-inflammatory cytokine environment, 
particularly IL-6, has been shown to decrease 
the cytolytic function of the NK cell (50). The 
inability of NK cells and cytolytic CD8 T cells 
to lyse infected and otherwise APCs results in 
prolonged cell-to-cell interactions and ampli-
fication of a pro-inflammatory cytokine cas-
cade, which ultimately leads to the activation 
of macrophages, causing hemophagocytosis 
and multi-organ dysfunction. In contrast to the 
pro-inflammatory macrophages, some macro-
phages exhibit anti-inflammatory phenotype 
(M2) with upregulated CD163 receptors and 
likely serve to dampen the immune response 
through hemophagocytosis (51, 52).

Expression of TNF by hemophagocytic mac-
rophages was reported in the liver of MAS 
patients (53). Elevated levels of TNF have been 
found in patients with other rheumatic dis-
eases [e.g., rheumatoid arthritis (RA)] and are 
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Table 2. Proposed diagnostic criteria for Macrophage Activation Syndrome complicating 
Systemic Lupus Erythematosus

Clinical Criteria	 Fever (>38°C)

	 Hepatomegaly (≥3 cm below the costal arch)

	 Splenomegaly (≥3 cm below the costal arch)

	 Hemorrhagic manifestations (purpura, easy bruising, or mucosal bleeding)

	 Central nervous system dysfunction (irritability, disorientation, lethargy,  
	 headache, seizures, or coma)

Laboratory Criteria	 2 of 3: white blood cell count ≤4.0×109/L, hemoglobin ≤90 g/L, or platelet  
	 ≤150×109/L)

	 Aspartate aminotransferase (AST) (>40 units/L)

	 Lactate dehydrogenase (LDH) (>567 units/L)

	 Fibrinogen ≤1.5 g/L

	 Triglycerides >178 mg/dL

	 Ferritin >500 μg/L

Diagnosis of MAS if 1 Clinical + 2 Laboratory

OR

Histopathologic criteria	 Evidence of macrophage hemophagocytosis in the bone marrow aspirate



known to successfully modify disease activity 
in a milieu of rheumatic diseases (e.g., RA, JIA, 
uveitis) (54, 55). Like TNF, IL-6 producing mac-
rophages have been found in the liver of MAS 
patients (53). Increased levels of IL-6 have also 
been reported in the serum of sJIA and in sepsis 
patients (56-58). Despite the association of IL-6 
levels and MAS, the role of IL-6 in the patho-
genesis of disease is not well-understood. It re-
mains unknown whether macrophages are the 
main cellular sources of IL-6 in MAS patients.

As members of the IL-1 family of cytokines, 
IL-1β and IL-18 are potent inducers of IL-6 pro-
duction in monocytes and macrophages (59, 
60). Levels of IL-1β and IL-18 are frequently 
markedly increased in patients with active sJIA 
and MAS (61-66). Shimizu et al. (64) used the 
ratio of IL-18 to IL-6 to predict the development 
of MAS, noting higher IL-18 levels during the 
active phase of MAS. Patients within this co-
hort, who had higher levels of IL-18, were more 
likely to develop MAS following treatment with 
IL-6 blockade (i.e., tocilizumab), suggesting 
that IL-18, rather than IL-6, may play a domi-
nant role in the pathogenesis of MAS. Likewise, 
while IL-18 is elevated in children with sJIA, the 
serum levels are significantly higher in sJIA that 
is complicated by active MAS (66). It is import-
ant to understand the mechanism behind the 
uncontrolled cytokine storm seen in MAS to 
target specific cytokines upstream and prevent 
further stimulation of the activated pro-inflam-
matory M1 macrophages (33).

Treatment
Historically, the treatment of MAS has been 
focused on controlling the underlying trigger, 
such as infection or sJIA treatment. However, 
not all cases present with a known pathogen or 
with a known etiology, making the treatment 
of the underlying trigger virtually impossible. 
Many rheumatologists have shifted toward cy-
tokine-specific therapies in conjunction with 
treatment of the underlying triggering disease, 
if it is known. This differs from the HLH-2004 
treatment protocol often recommended by 
oncologists, in which patients receive initial 
treatment with etoposide and dexamethasone 
(previously cyclosporine as well) for 8 weeks 
and possibly intrathecal methotrexate and 
prednisolone if CNS involvement is suspect-
ed. Patients who do not achieve remission are 
then bridged to receive bone marrow trans-
plants (18). Mortality rates in patients treated 
using the HLH 2004 protocol remain high, with 
a 5-year survival rate of 64% in children with 
sHLH (67).

In addition to broadly immunosuppressive 
medications, such as corticosteroids and cy-

closporine, cytokine-specific therapy (e.g., 
anakinra) may prove to be more effective in 
dampening the overly active immune system. 
Anakinra is a recombinant IL-1 receptor antag-
onist targeting both IL-1α and IL-1β cytokines 
used off-label in patients with sJIA and less 
commonly in patients with MAS, either in as-
sociation with sJIA or other etiologies (68-70). 
Efficacy data in the treatment of MAS with 
anakinra is limited to retrospective data, but 
many patients achieve disease remission with 
normalization of lab abnormalities and fever 
despite the poor prior response to more tra-
ditional therapies (69, 71). Earlier initiation of 
anakinra within 5 days of hospitalization was 
associated a statistically significant reduction 
in mortality among patients with non-malig-
nancy associated MAS (72).

Likewise, canakinumab is a monoclonal an-
tibody that specifically targets only the IL-1β 
cytokine and is a common treatment target 
in patients with sJIA. Patients with sJIA treated 
with either anakinra or canakinumab remain 
at risk for MAS, suggesting that IL-1 receptor is 
not the sole contributor to the pathogenesis of 
MAS and that the increased risk may be dose 
dependent (19, 68). Treatment with recombi-
nant IL-18 binding protein (IL-18bp) in com-
bination with anakinra successfully improved 
life-threatening hyperinflammation in a pa-
tient with sJIA and refractory MAS, suggesting 
that IL-18 may also stimulate the inflammatory 
cascade leading to MAS in patients with sJIA 
(46). Similarly, IL-18bp has been known to ef-
fectively treat a child with an autoinflammato-
ry disorder and refractory MAS (73).

Tocilizumab is a monoclonal antibody that 
targets the IL-6 receptor and is approved for 
use in RA, giant cell arteritis, polyarticular JIA, 
and sJIA (74). Despite its success in treating 
acute sJIA, patients with sJIA who are treat-
ed with tocilizumab remain at risk for MAS, 
which suggests that IL-6 blockade alone is in-
sufficient to control the inflammatory cascade 
(75-77). These patients tend to be afebrile and 
had lower cell counts and ferritin levels with 
higher liver enzymes (19, 76). The mechanism 
of IL-6 in the pathogenesis of MAS remains 
controversial. Maude et al. (78) reported rapid 
resolution of HLH-like cytokine release syn-
drome (CRS) following the administration of 
tocilizumab in one patient with drug-induced 
(i.e., blinatumomab) cytokine storm. IL-6 
blockade has similarly shown efficacy in CAR 
T cell therapy-triggered CRS (78). The utility 
of IL-6 blockade in other forms of sHLH/MAS 
remains unknown at present, but targeting 
other cytokines for treating sHLH/MAS are 
currently being explored.

While successful treatment of MAS with etaner-
cept, a TNF receptor antagonist, has been re-
ported (79), other studies have shown that it 
may trigger or worsen disease progression (80). 
Thus, the role of TNF and its blockade in MAS 
remains unclear. By comparison, targeting IFNγ 
with the monoclonal antibody emapa- lumab 
(81) has recently been approved by the FDA 
for treating fHLH; it’s role in sHLH/MAS is under 
exploration. Similarly, inhibition of cyto- kine 
signaling via JAK-STAT inhibitors may also have 
a future role in treating sHLH/MAS (82). Thus, 
the future of cytokine-targeted therapies looks 
bright for treating patients with frequent- ly fa-
tal disorders, such as sHLH and MAS.

Anecdotally, cytokine-specific therapies in 
combination with treatments for the underly-
ing disease appear to be effective in reducing 
mortality rates and improving overall morbid-
ity outcomes in children with MAS. Further 
studies and clinical trials are needed to better 
assess the role of various pro-inflammatory 
cytokines in the pathogenesis of MAS and to 
determine their clinical relevance. Ultimately, 
a personalized medicine approach with a vari-
ety of cytokine targeting therapeutics may be 
available for various forms of sHLH/MAS.

Conclusion
MAS is a potentially fatal inflammatory con-
dition that can lead to multi-organ failure if 
it is treated inadequately. In the absence of 
generalizable validated diagnostic criteria, its 
recognition is often delayed. Clinical overlap 
with fHLH suggests that MAS is on one end 
of the same disease spectrum. Recognition of 
the pathogenesis of MAS can guide diagno-
sis and direct therapy toward target specific 
treatment. A common hypothesis to under-
stand the pathophysiology of MAS propos-
es a defect in lymphocyte cytolytic activity. 
Normally, cytolytic cells induce cell apoptosis 
in infected or activated APCs. In an infected 
or inflammatory state, cytolytic cells may in-
duce apoptosis in activated macrophages 
and dendritic cells and serve to control the in-
flammatory response. A defect in the cytolytic 
function may result in overstimulation of the 
immune system leading to the multi-organ 
failure seen in MAS. The cytokine storm (i.e., 
IL-1, IL-6, IL-18) results in activation of macro-
phages, causing hemophagocytosis, and con-
tributes to multi-organ dysfunction. Specific 
heterozygous gene mutations in fHLH-associ-
ated cytolytic pathway genes (e.g., PRF1, UN-
C13D) have been linked to a substantial sub-
set of MAS patients. These mutations cause 
defects in various proteins responsible for the 
production and transport of granules lead-
ing to the apoptosis of target cells. In addi-

S17

Eur J Rheumatol 2020; 7(Suppl 1): S13-S20 Crayne and Cron. Pediatric macrophage activation syndrome



tion, mutations activating the inflammasome 
complex lead to high IL-18 levels responsible 
for MAS pathophysiology. Early recognition 
of and prompt treatment with cytokine-spe-
cific therapy (e.g., anakinra, IL-18bp) in MAS 
is critical in maximizing outcomes with this 
potentially life-threatening disease. Future 
studies are needed to compare existing diag-
nostic criteria to develop a set of uniform cri-
teria that may be applied across all rheumatic 
diseases and other forms of sHLH/MAS. Ulti-
mately, tailored therapy for individual sHLH/
MAS patients based on genetics, underlying 
disorders, and triggers (e.g., infections) will 
likely optimize outcomes (83).
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