

Is There Still a Place for Computed Tomography Angiography in Assessing Inflammatory Large-vessel Involvement in Large Vessel Vasculitis?

Sergio Prieto-González^{1,2} , Javier Marco-Hernández^{1,2} , Raül Jordà-Sánchez^{1,2} , Georgina Espíglol-Frigolé¹ , África Muxí³ , Rosa Gilabert⁴ , Maria C Cid¹

To the Editor,

We read with great interest the study by Nakagomi et al¹ on the role of contrast-enhanced computed tomography (CE-CT) in assessing large-vessel involvement (LVI) in large-vessel vasculitis (LVV).

The authors retrospectively analyzed a cohort of 27 giant cell arteritis (GCA) and 24 Takayasu arteritis (TAK) patients who underwent CE-CT at diagnosis, prior to treatment onset, and again 1-4 months later during clinical remission or treatment. They evaluated imaging findings suggesting inflammation (wall thickening and contrast enhancement), as well as vascular damage (stenosis, dilation, and calcification) in 21 different arteries. The study found a higher prevalence of inflammatory LVI in the GCA cohort (approximately 80%) than previously reported using CT angiography (65%).² This difference may be attributable to the retrospective nature of the study, including a predominantly LV-GCA phenotype (only 26% of patients reported headache). As expected, inflammatory findings improved after treatment; however, wall thickening persisted in more than 50% of patients, mostly without concomitant contrast enhancement, likely reflecting vascular remodeling rather than ongoing inflammation.^{3,4} Conversely, no significant changes were observed in damage parameters, probably due to the short follow-up period.

Although TAK and GCA share overlapping features, they differ in several important aspects. Comparative imaging studies reveal that TAK more frequently exhibits stenotic lesions, particularly in the carotid, mesenteric, renal, and iliofemoral arteries, while patients with GCA tend to show more aneurysmal changes in some studies, though findings are not always consistent across cohorts. Cluster analysis also revealed distinct vascular patterns: in GCA, subclavian involvement is typically symmetric, while in TAK, left subclavian disease clusters with bilateral carotid artery involvement.³

In recent decades, imaging has accumulated significant attention in LVV and is constantly used for disease diagnosis and LV detection. Several imaging modalities are employed depending on the clinical scenario, with growing interest in functional and molecular imaging techniques. However, there is still room for CTA, as it offers excellent spatial resolution for assessing wall abnormalities, provides a comprehensive view of the aorta and its major branches with a single, rapid acquisition, and is widely accessible.³

To maximize its diagnostic accuracy, imaging should ideally be performed before or shortly after glucocorticoid initiation, as sensitivity and specificity may decline steeply within days or weeks.^{2,3} Furthermore, although imaging is not routinely recommended for follow-up, it may offer valuable insights into disease activity and is being increasingly explored for its role in evaluating treatment response and persistent disease. Using CTA, some studies, including the one by Nakagomi et al,^{1,4} show that while contrast enhancement resolves after treatment, wall thickening persists in more than half of patients, raising questions about its clinical significance and interpretation. Most of these cases may only require close monitoring, and misinterpreting such findings could lead to inappropriate therapeutic decisions, including unnecessary prolongation or escalation of immunosuppressive therapy. The emergence of hybrid imaging modalities, such as positron emission tomography (PET)/magnetic resonance imaging, and novel targeted PET/CT tracers may represent a significant advancement and appear particularly promising for detecting ongoing inflammation, even in clinical remission, where imaging signals may indicate subclinical or smoldering inflammation in some patients.⁵ However, these emerging imaging modalities face several limitations. Access to them remains restricted in many centers, costs are high, and there is still a lack of standardization

ORCID iDs of the authors:
S.P.-G. 0000-0003-3179-597X, J.M.-H. 0000-0002-8278-3146, R.J.-S. 0009-0000-4204-0076, G.E.-F. 0000-0002-8299-0209, Á.M. 0000-0002-8278-3146, R.G. 0000-0002-7632-2626, M.C.C. 0000-0002-4730-0938

Cite this article as: Prieto-González S, Marco-Hernández J, Jordà-Sánchez R, et al. Is there still a place for computed tomography angiography in assessing inflammatory large-vessel involvement in large vessel vasculitis? comment of the article of nakagomi et al. *Eur J Rheumatol*. 2025; 12(4), 0041, doi: 10.5152/eurjrheum.2025.25041.

¹ Vasculitis Research Unit, Department of Systemic Autoimmune Diseases, Hospital Clínic, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain

² Department of Internal Medicine, Hospital Clínic, Barcelona, Spain

³ Department of Nuclear Medicine, Hospital Clínic, Barcelona, Spain

⁴ Center for Diagnostic Imaging, Hospital Clínic, Barcelona, Spain

Corresponding author:
Sergio Prieto-González
E-mail: sprieto@clinic.cat

Received: May 17, 2025

Revision Requested: July 23, 2025

Last Revision Received: July 28, 2025

Accepted: July 29, 2025

Publication Date: December 31, 2025

Copyright@Author(s) - Available online at www.eurjrheumatol.org.

Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

and widespread clinical validation. These challenges highlight the ongoing practical value of CE-CT in real-world clinical settings.

Finally, imaging, and especially CTA, is essential for detecting and monitoring complications, such as dilation or stenosis, over time. However, the optimal interval for serial imaging remains unclear.³

Data Availability Statement: The data that support the findings of this study are available on request from the corresponding author.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – S.P.-G.;Design – S.P.-G.;Supervision – S.P.-G., M.C.C.;Resources – S.P.-G., J.M.-H., R.G., A.M., G.E.-F.;Materials – S.P.-G., R.J.-S.,

J.M.-H.;Data Collection and/or Processing – S.P.-G.;Analysis and/or Interpretation – S.P.-G.;Literature Search – S.P.-G.;Writing – S.P.-G., M.C.C.;Critical Review – S.P.-G., M.C.C.

Declaration of Interests: The authors have no conflict of interest to declare.

Funding: The authors declared that this study has received no financial support.

References

1. Nakagomi D, Shimizu T, Furuta S, et al. Comparison and significance of contrast-enhanced computed tomographic findings of large-vessel vasculitis before and after treatment: differences between Takayasu arteritis and giant cell arteritis. *Eur J Rheumatol.* 2024;11(3):371-377. [\[CrossRef\]](#)
2. Prieto-González S, Arguis P, García-Martínez A, et al. Large vessel involvement in biopsy-proven giant cell arteritis: prospective study in 40 newly diagnosed patients using CT angiography. *Ann Rheum Dis.* 2012;71(7):1170-1176. [\[CrossRef\]](#)
3. Prieto-González S, Espigol-Frigolé G, García-Martínez A, et al. The expanding role of imaging in systemic vasculitis. *Rheum Dis Clin North Am.* 2016;42(4):733-751. [\[CrossRef\]](#)
4. Prieto-González S, García-Martínez A, Taveras-Bahillo I, et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. A prospective, longitudinal study. *Medicine.* 2015;94(5):e486. [\[CrossRef\]](#)
5. Pugh D, Patel D, Macnaught G, et al. 18F-FDG-PET/MR imaging to monitor disease activity in large vessel vasculitis. *Nat Commun.* 2024;15(1):7314. [\[CrossRef\]](#)