Walking, running, and recreational sports for knee osteoarthritis: An overview of the evidence
Dana Voinier (1), Daniel K. White (2)

Abstract

Objective: We provided an overview of narrative reviews, systematic reviews, and meta-analyses that summarize primary evidence of how physical activity (PA) relates to structural progression of knee osteoarthritis (OA). This overview can serve as a resource for healthcare providers when recommending PA to patients with or at risk for knee OA.

Methods: We searched the PubMED database for publications on “exercise” [MeSH Terms] and “knee osteoarthritis” [MeSH Terms]. We restricted our search to review articles, originally published in English, from 2005 to 2020. We then added several original studies to provide more detailed support of the findings of the review articles, based on the authors’ familiarity with the literature.

Results: We summarized the findings of 20 reviews and an additional 12 original studies. We found consistent evidence that common forms of PA (walking, running, and certain recreational sports) are not related to structural progression of knee OA, and can be safely recommended to patients with or at risk for knee OA.

Conclusion: Healthcare providers can refer to this overview of the evidence, as well as current PA guidelines, when recommending PA to their patients with or at risk for knee OA. Future studies can support PA guidelines that target preserving the structural integrity of the knees.

Keywords: Physical activity, exercise, running, osteoarthritis of the knee

Introduction

Knee osteoarthritis (OA) is a serious disease(1) characterized by structural breakdown of the knee joint. Globally, OA is the third fastest growing disease(1) and a leading cause of disability. To address the growing burden of this disease, it is crucial that healthcare providers are able to recognize, and intervene on, key risk factors of knee OA.

One such risk factor, whose role has remained unclear for some time, is physical activity (PA). PA is defined as “any bodily movement produced by skeletal muscle that results in energy expenditure.” Such movement may be structured (i.e., purposeful and repetitive, known as “exercise”) or unstructured (e.g., household activities, like cooking and gardening). While PA has many known health benefits, it is often associated with “wear and tear” on the knee joint. Fortunately, our understanding of knee OA is evolving, as there is evidence that PA may not be harmful to the knee. That is, practice guidelines for the management of knee OA now recommend PA as a first-line intervention to improve pain and function. While pain and function are well-studied in the context of PA and knee OA, few studies examine how PA relates to structural progression of knee OA. That is, healthcare providers know that recommending PA can improve pain and function in patients with knee OA but do not know how it affects the structural integrity of their patients’ knees. This uncertainty serves as an important barrier to providers recommending PA to their patients increasing their PA. Several studies over the last decade have attempted to address this gap in our understanding of knee OA. These studies are effectively summarized (qualitatively and/or quantitatively) through narrative reviews, systematic reviews (SRs), and meta-analyses; unfortunately, it may be cumbersome for healthcare providers to identify and synthesize existing reviews that are relevant to this clinical question.

Therefore, our objective was to provide a comprehensive overview of existing narrative reviews, SRs, and meta-analyses that examine how PA relates to structural progression of knee OA. We searched the PubMed database for reviews related to “exercise” [MeSH Terms] and “knee osteoarthritis” [MeSH Terms] (Figure 1). Additional details about inclusion/exclusion of reviews can be found in the Supplementary
discuss how other risk factors (obesity, previous
published in English, n = 2
Duplicate, n = 3
Excluded: n = 74
Not in knee OA, n = 10
No structural outcomes, n = 59
Not originally published in English, n = 2
Duplicate, n = 3
Excluded: n = 20
Not in human subjects, n = 1
No measures of physical activity, n = 4
No structural outcomes, n = 12
Duplicate, n = 1
Unable to find full text, n = 2
Included after detailed review:
 n = 20

Voinier and White. Walking, running, and recreational sports for knee osteoarthritis
Eur J Rheumatol 2022

There is consistent evidence that common forms of PA (walking, running, and certain recreational sports) do not increase risk of structural progression of knee OA.

Healthcare providers can refer to the WHO guidelines to provide a general PA recommendation to patients with, or at risk for, knee OA.

Some patients may benefit from additional, specific recommendations that address other risk factors (obesity, previous knee injury, and other structural abnormalities) that relate to knee OA progression.

Adults with and without knee OA could benefit from future studies that determine if meeting PA guidelines preserves the structural integrity of the knees.

Main Points

• There is consistent evidence that common forms of PA (walking, running, and certain recreational sports) do not increase risk of structural progression of knee OA.

• Healthcare providers can refer to the WHO guidelines to provide a general PA recommendation to patients with, or at risk for, knee OA.

• Some patients may benefit from additional, specific recommendations that address other risk factors (obesity, previous knee injury, and other structural abnormalities) that relate to knee OA progression.

• Adults with and without knee OA could benefit from future studies that determine if meeting PA guidelines preserves the structural integrity of the knees.

Figure 1. Flow diagram depicting PubMed search strategy.

In the first section of this overview, we cite evidence as to how (and why) our understanding of PA and knee OA is evolving. In the next section, we describe general PA guidelines and then summarize the evidence for (1) walking, (2) running, and (3) recreational sports in three subsections. We added a fourth subsection to discuss how other risk factors (obesity, previous knee injury, and other structural abnormalities) may impact PA recommendations for patients with, or at risk for, knee OA. In the final two sections of this overview, we provide suggestions for future research and highlight the need for PA guidelines that preserve the structural integrity of the knees.

Then vs now: our evolving understanding of PA in knee OA

For years, it was a commonly held belief that engaging in PA-accelerated structural progression of knee OA. Our understanding of knee OA was limited to gradual “wear and tear” of the knee joint, which could only be made worse by engaging in PA. Fortunately, over the last few decades, our understanding of knee OA evolved. Numerous studies have demonstrated that PA improves pain and function in adults with knee OA.5–7, now, PA is universally recommended as a first-line, nonpharmacological intervention for the management of knee OA. Unfortunately, a recent systematic review by Kraus et al. concluded that there is much less evidence relating PA to structural outcomes in knee OA. This makes it difficult for providers to refute patients’ beliefs that PA causes “wear and tear.”

However, providers should be aware that available evidence consistently shows that many types of PA do not increase risk for structural progression of knee OA. That is, adults with, or at risk for, knee OA can regularly engage in PA without accelerating their OA. Systematic reviews by Bricca et al. and Quicke et al. examined structural outcomes following PA interventions in adults with knee OA and knee pain, respectively. Nearly, all PA interventions were weightbearing, land-based, and aerobic in nature, and all PA interventions involved a structured exercise program at a moderate intensity for a minimum of 3 months. In the first review by Bricca et al., 13 out of 14 study comparisons revealed that PA had no effect (or a positive effect) on the structural integrity of knee cartilage. In the second review by Quicke et al., six out of seven studies concluded that PA did not increase risk of radiographic OA progression, and four out of four studies concluded that PA did not increase risk of knee replacement.

Recommended PA for adults with knee OA

The World Health Organization (WHO) recommends that all adults engage in at least 150 minutes week−1 of moderate intensity PA (e.g., brisk walking) or at least 75 minutes week−1 of vigorous intensity PA (e.g., jogging or running). These guidelines are echoed by the United States and countries in the European Union. Importantly, adults who meet these guidelines are not at increased risk for the development (i.e., incidence) of radiographic or symptomatic knee OA (hazard ratio [HR] = 1.2, 95% CI 0.9-1.8).

It should be noted that the guidelines take a “one-size-fits-all” approach to recommending PA, whereby all adults (18+ years) are considered capable of meeting these guidelines. Below, we cite evidence that even adults with severe knee OA or symptoms, who walk with an assistive device or who are of older age, can safely engage in PA and meet PA guidelines.

First, adults with severe knee OA or symptoms can engage in PA without increasing their knee pain. A narrative review by Esser and Bailey cited an original study by Mangione et al., in which adults with mild to severe knee OA were randomly assigned to either a low-intensity or high-intensity structured exercise program at a moderate intensity for 70 minutes week−1 of moderate intensity PA (e.g., jogging or running) or usual care (i.e., pain management). Those assigned to the walking program spent, on average, 18 more minutes per day in walking (95% CI 5-31 minutes) but had no greater knee pain than the usual care group (difference = 0.1, 95% CI –0.7 to –1.0) per the Numeric Pain Rating Scale.
<table>
<thead>
<tr>
<th>Review Details</th>
<th>Measure(s) of Physical Activity</th>
<th>Measure(s) of Structural Progression of Knee OA</th>
<th>Main Results (Qualitative Synthesis or Meta-analysis) or Main Conclusions</th>
</tr>
</thead>
</table>
| Kraus et al.\(^9\) Systematic umbrella review Medicine & Science in Sports & Exercise | Self-reported PA via PASE questionnaire
Steps/day via accelerometer | Knee replacement
Progression of radiographic OA | This umbrella review cited a meta-analysis by Timmins et al.\(^{49}\) that included 2,172 adults from three case–control studies. The authors found that runners (who ran for 1 year up to a lifetime) had lower odds of knee replacement due to OA than nonrunners (pooled odds ratio \[OR\] = 0.46, \(P = .0004\)). See entry below for Timmins et al.\(^{49}\) This umbrella review also cited a systematic review by Quicke et al. that included 8,614 adults with knee pain and/or radiographic knee OA. Six out of seven RCTs found that adults who participated in a PA intervention (i.e., PA groups) had no greater risk for structural progression of OA than those who did not (i.e., non-PA groups) Four out of four RCTs found that adults in PA groups did not have more knee replacements than non-PA group (8 vs 10, respectively) A retrospective case–control study found that adults with high cumulative hours of recreational PA had lower odds of knee replacement than adults with a history of no regular PA (men: \(OR = 0.35, 95\% CI 0.12-0.95\) and women: \(OR = 0.56, 95\% CI 0.30-0.93\)) |
| Bricca et al.\(^{17}\) Systematic review British Journal of Sports Medicine | PA interventions lasting a minimum of 3 months, most involving weight-bearing, land-based, aerobic, moderate intensity PA | Cartilage morphometry (thickness and volume)
Cartilage morphology (defects)
Cartilage composition (glycosaminoglycan [GAG] content or T2 relaxation times) | This SR included 702 adults with or at risk for knee OA from nine RCTs. A total of 14 comparisons of MRI-based cartilage measures were made between PA and non-PA groups
Ten out of 14 comparisons showed PA had no effect on cartilage
Three comparisons showed PA had a positive effect on cartilage
One comparison showed PA had a negative effect on cartilage |
| Antony et al.\(^{41}\) Narrative review Arthritis Research & Therapy | PA interventions including a 10-week moderate running program and 4-month moderate weight-bearing PA program
Self-reported PA via questionnaire (recent and lifetime) | Cartilage volume
Cartilage GAG content
Incident radiographic OA | This narrative review focused on early life risk factors for knee OA including PA. The authors did not perform a qualitative synthesis of included studies
The authors concluded that in children (9-18 years) and young adults (25 years), there is consistent evidence that moderate PA is beneficial to the knee joint later in life (based on cartilage volume, GAG content, BMLs); meanwhile, there is mixed evidence for the effects of vigorous PA |
| Fransen et al.\(^{54}\) Narrative review Best Practice & Research Clinical Rheumatology | Self-reported PA via questionnaire | Self-reported physician-diagnosed knee OA
Radiographic OA
Clinical knee OA
Knee replacement | This narrative review included 10 “longitudinal cohort studies evaluating physical activity as a risk factor for symptomatic knee or hip OA (or joint replacement surgery)”
Six out of seven studies found that self-reported PA was not related to incident symptomatic knee OA. For example, Barbour et al. found that meeting PA guidelines was not associated with incident symptomatic knee OA (HR = 1.2, 95\% CI 0.9-1.9). However, Martin et al.\(^{13}\) found that women who were most active and obese had higher odds of incident knee OA (OR 1.8, 95\% CI 1.5-2.2) One study found that self-reported walking was not related to incident knee pain
Two studies found that moderate intensity PA or walking was not related to incident knee replacement |
<table>
<thead>
<tr>
<th>Review Details</th>
<th>Measure(s) of Physical Activity</th>
<th>Measure(s) of Structural Progression of Knee OA</th>
<th>Main Results (Qualitative Synthesis or Meta-analysis) or Main Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lim et al.53</td>
<td>Self-reported PA via questionnaire</td>
<td>Prevalent BMLs Incidental BMLs</td>
<td>This SR included 533 adults, with or without knee OA, from three cross-sectional studies that examined how PA related to risk for BMLs. The authors highlighted the paucity of evidence regarding the relationship between PA and BMLs. One study found that PA was not related to prevalent BMLs and another study found that high PA (per the PASE questionnaire) was related to higher prevalence of BMLs (low PASE = 28%, middle PASE = 42%, and high PASE = 54%, P = .02). One study found that recreational walking frequency was protective against BMLs 10 years later (OR = 0.6, 95% CI 0.3-0.98)</td>
</tr>
<tr>
<td>Jones et al.48</td>
<td>Self-reported PA via questionnaire Steps/day via accelerometry Incident knee OA Cartilage volume Cartilage GAG content Cartilage defects BMLs Knee replacement</td>
<td>This narrative review focused on the effects of PA on structural outcomes measured via MRI. The authors did not perform a qualitative synthesis of included studies. The authors concluded that the evidence most consistently indicates that PA has little effect on knee joint health. Furthermore, PA can be recommended to older adults without concern for structural deterioration, although there is still insufficient evidence for those with existing BMLs</td>
<td></td>
</tr>
<tr>
<td>Esser and Bailey Narrative review Current Pain and Headache Reports</td>
<td>Self-reported PA via questionnaire PA interventions including walking, aerobic exercise, and cycling Incident knee OA Number of osteophytes</td>
<td>This narrative review focused on addressing misconceptions that “health care providers and patients share” regarding PA and knee OA. The authors did not perform a qualitative synthesis of included studies. The authors concluded that there is “overwhelming” evidence that light to moderate PA does not cause or accelerate knee OA. Furthermore, PA may protect against knee OA and should be recommended to all patients for its many benefits</td>
<td></td>
</tr>
<tr>
<td>Urquhart et al.40 Systematic review Medicine & Science in Sports & Exercise</td>
<td>Self-reported PA via interview or questionnaire Number of osteophytes Loss of joint space width Cartilage volume Cartilage defects</td>
<td>This SR included 9,582 adults, with and without knee OA, from 28 studies. Five out of eight cross-sectional and case–control studies found that PA had no effect on structural (radiographic) progression of knee OA. Eight out of 13 longitudinal studies found that PA had no effect on structural (radiographic) progression of knee OA. Three out of four cross-sectional studies found that PA had no effect, or a beneficial effect, on knee cartilage based on MRI. Three out of three longitudinal studies found that PA had no effect, or a beneficial effect, on knee cartilage based on MRI.</td>
<td></td>
</tr>
<tr>
<td>Bennell and Hinman (2011) Narrative review Journal of Science and Medicine in Sport</td>
<td>PA interventions including a 12-month land-based strengthening program Progression of radiographic OA</td>
<td>This narrative review focused on PA prescription to manage symptoms in patients with knee OA. The authors did not perform a qualitative synthesis of included studies. The authors concluded that few studies have evaluated the effects of PA on structural progression of knee OA, and that there is currently no evidence to show that PA can be disease-modifying</td>
<td></td>
</tr>
<tr>
<td>Egan and Mentes Narrative review Journal of Gerontological Nursing</td>
<td>Self-reported PA via survey Cartilage defects</td>
<td>This narrative review discussed several risk factors for knee OA and recommended nursing interventions for symptom management. The authors did not perform a qualitative synthesis of included studies. The authors cited one original study by Racunica et al., who found that vigorous PA was associated with improved integrity of knee joint structures in adults aged 50-79. The authors also cited one review by Ding et al., who reported that women who walked regularly were less likely to show cartilage degeneration on MRI, and that regular exercise may be protective against cartilage degeneration through maintenance of quadriceps strength</td>
<td></td>
</tr>
</tbody>
</table>
In addition, older adults with knee pain who use an assistive device can engage in walking (as a form of PA) without worsening pain or structural progression of knee OA.29 These adults can walk for 20 minutes day−1 (without a higher rate of falls) to minimize functional decline.26 Furthermore, the PA guidelines also apply to adults who are considered "old-old" (75-84 years) or "oldest old" (85+ years). A large RCT by Pahor et al.27 focused on adults in this age range (70-89 years) and randomly assigned them to either a structured PA program (walking at a moderate intensity for 150 minutes week−1 plus strengthening, flexibility, and balance exercises) or an educational program. The PA program was protective against both incident (HR = 0.82, 95% CI 0.69-0.98) and persistent walking disability (HR = 0.72, 95% CI 0.57-0.91) over 2.6 years compared with the educational program and did not have a significantly higher rate of adverse events (HR = 1.08, 95% CI 0.98-1.20).

Thus, providers should recommend PA to all adults, so they can meet PA guidelines. This overview focuses on recommendations for three common forms of PA: (1) walking, (2) running, and (3) recreational sports. Recommending one form of PA over another should be largely based on patient preferences but should also consider the presence of certain risk factors (i.e., obesity, previous knee injury, and structural knee abnormalities) that independently contribute to the progression of knee OA.28 We also provide a brief discussion as to how providers should recognize and address these other risk factors when recommending PA.

Walking
Walking is the most common form of PA among adults.29 Walking is practical and accessible, as it requires only a comfortable pair of shoes.29 Furthermore, brisk walking is a prime example of moderate intensity PA. "Brisk" walking generally refers to (1) a walking cadence of at least 100 steps min−1, (2) a walking speed of about 3 miles h−1, or (3) a walking pace of about 20 min mile−1.30 That is, providers can recommend that patients go for a 30-minute brisk walk, 5 times week−1, to satisfy the WHO recommendation of at least 150 minutes week−1 of moderate intensity PA. Reviews by Antony et al.41 and Fransen et al.44 cited as an original study by Felson et al.31 found that adults who were normal weight to overweight and reported walking at least 9 miles week−1 (i.e., about 180 minutes week−1, which satisfies the WHO recommendation) did not have increased risk of joint space loss (OR = 0.95, 95% CI 0.62-1.45) or incident knee OA (OR = 1.10, 95% CI 0.73-1.66) over a 9-year period.31 Reviews by Kraus et al.9 and Fransen et al.54 cited as original studies by Manninen et al.37 and Ageberg et al.,38 respectively, found that higher self-reported lifetime PA did not increase risk for knee replacement (men: OR = 0.35, 95% CI 0.12-0.95 and women: OR = 0.56, 95% CI 0.30-0.93),32 and higher leisure-time PA (including walking) was not associated with incident knee replacement.13

Alternatively, patients who use a pedometer or activity monitor can aim to walk a total of 10,000 steps day−1.34 Reviews by Kraus et al.9 Esser and Bailey,16 and Jones et al.48 cited as original studies by Doré et al.53 and Oiestad et al.36 separately found that adults with mild to moderate knee OA who walked more than 10,000 steps day−1 had no greater risk for worsening cartilage defects over 2 years.
Table 2. Summary of Reviews That Examined Running and Structural Progression of Knee OA

<table>
<thead>
<tr>
<th>Review Details</th>
<th>Measure(s) of Physical Activity</th>
<th>Measure(s) of Structural Progression of Knee OA</th>
<th>Main Conclusion(s)</th>
</tr>
</thead>
</table>
| Gessel and Harrast\(^43\) Narrative review Current Sports Medicine Reports | Self-reported running, categorized as:
 - Nonrunning
 - Low-dose, e.g., less than 25 mi week\(^{-1}\)
 - High-dose, e.g., at least 25 mi week\(^{-1}\) | Incident radiographic OA
 Progression of radiographic OA
 Incident symptomatic OA | This narrative review focused on the debate surrounding “whether or not running leads to the development of knee and hip osteoarthritis.” The authors did not perform a qualitative synthesis of included studies
 The authors concluded that low-dose running may protect against the onset and progression of knee OA, whereas higher-dose running may increase one’s risk of developing OA in the lower extremities, although dosage remains challenging to define
 The authors also included anecdotal evidence that healthcare providers should talk to patients who want to start running about (1) the importance of conditioning and cross-training, (2) possible modifications for adults who are obese, and (3) how to avoid and/or treat common running injuries |
| Castillo et al.\(^44\) Narrative review American Journal of Physical Medicine & Rehabilitation | Self-reported running (12-24 mi week\(^{-1}\) over a range of 32-50 years | Loss of joint space width
 Progression of radiographic OA
 Number of osteophytes | This narrative review summarized evidence related to running and risk for developing knee OA. The authors did not perform a qualitative synthesis of included studies
 The authors concluded that available evidence does not indicate a relationship between low- and moderate-level running and knee OA. Furthermore, competitive runners seem to demonstrate a higher risk of knee OA, but “competitive running” has been inconsistently defined |
| Alentorn-Geli et al.\(^45\) Systematic review and meta-analysis Journal of Orthopaedic & Sports Physical Therapy | Self-reported running, categorized as:
 - Nonrunning
 - Recreational
 - Competitive, i.e., professional, elite, or ex-elite athletes | Incident radiographic OA
 Prevalent radiographic OA
 Progression of radiographic OA | This SR included 125,810 adults, with and without knee OA, from 25 studies that examined running and knee OA
 Eighteen out of 22 studies concluded that running was not related to increased risk of knee OA
 The authors performed a MA that included 114,829 adults from 17 studies. The meta-analysis showed that recreational runners had lower odds of knee OA than control individuals (pooled OR = 0.83, 95% CI 0.7-0.99). They also found that recreational runners had lower odds of knee OA than competitive runners (P = .005) |
| Miller\(^46\) Narrative review Exercise and Sport Sciences Reviews | Self-reported running, categorized as:
 - Recreational, e.g., 10-20 mi week\(^{-1}\)
 - Competitive, e.g., \(>100\) mi week\(^{-1}\) | Incident radiographic OA
 Cartilage thickness
 Cartilage GAG content | This narrative review found that contrary to popular belief, runners are not at higher risk for developing knee OA. The author did not perform a qualitative synthesis of included studies
 The author offered two potential explanations as to why runners do not have higher risk for knee OA: (1) stresses on the knee joint during running are actually not very high, and (2) runners may have conditioned their cartilage to withstand higher loads |
| Timmins et al.\(^49\) Systematic review and meta-analysis American Journal of Sports Medicine | Self-reported running | Incident radiographic OA
 Progression of radiographic knee OA (based on osteophytes, cartilage thickness/volume/surface area, knee joint angle, and joint space width)
 Knee replacement | This SR included 8,753 adults with and without knee OA from 15 studies. A total of 19 statistical comparisons were made between runners and nonrunners
 Three out of five comparisons showed no differences in incident OA between runners and nonrunners (OR = 1.00, 95% CI 0.27-3.68). One comparison showed that male and female orienteers had no greater risk for incident OA than community controls (OR = 1.07, 95% CI 0.62-1.82 and OR = 0.91, 95% CI 0.34-2.45, respectively). One comparison showed that male elite orienteers had greater odds for incident OA than community controls (OR = 1.79, 95% CI 1.10-3.54) |
Running is another common form of PA that is growing in popularity. Similar to walking, running requires little equipment and is highly accessible. Over the last decade, several reviews specifically addressed the misconception that running increases one’s risk for knee OA (Table 2). For example, a review by Hansen et al. identified the limitations of a few, older studies that posited a link between running and knee OA (e.g., small sample size, lack of a control group, and limited generalizability of findings). Recent narrative reviews by Gessel and Harrast and Castillo et al. as well as a systematic review by Alentorn-Geli et al. all provide consistent evidence that recreational running of 25 miles week⁻¹ (~250 minutes week⁻¹) is not related to increased risk of structural progression of knee OA. In fact, Alentorn-Geli et al. performed a meta-analysis that showed recreational runners had both lower odds of knee OA than control individuals (pooled OR = 0.83, 95% CI 0.7-0.99), and lower prevalence of knee OA than competitive runners (P = .005). In contrast, Miller states that even elite-level runners (e.g., over 100 miles week⁻¹) may not have higher risk of knee OA, although he acknowledges that this is less conclusive and may only hold true for elite runners who remain uninjured.

Narrative reviews by Jones et al., Hansen et al., and Urquhart et al. presented evidence that running may also be beneficial for the knee joint. Running seems to have consistently positive effects on knee cartilage, but not subchondral bone or osteophytes. Additionally, a meta-analysis by Timmins et al. summarized three case–control studies and concluded that runners had 54% lower odds (pooled OR = 0.46, P = .0004) of having a knee surgery due to OA when compared with nonrunners. In his narrative review, Bosomworth proposed anecdotal recommendations for patients who are runners vs nonrunners. He advocated for patients who were already runners to be encouraged to continue running (so long as they also take measures to prevent injury). Conversely, patients who are nonrunners can be encouraged to engage in walking, as there is more consistent evidence that walking is not harmful (and may be beneficial) to the knee joint.

Table 2. Summary of Reviews That Examined Running and Structural Progression of Knee OA

<table>
<thead>
<tr>
<th>Review Details</th>
<th>Measure(s) of Physical Activity</th>
<th>Measure(s) of Structural Progression of Knee OA</th>
<th>Main Conclusion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hansen et al.</td>
<td>Self-reported running</td>
<td>Prevalent radiographic OA</td>
<td>Twelve out of 14 comparisons showed no differences in progression of radiographic OA between runners and nonrunners. One comparison showed a higher score of sclerosis in female runners compared to community controls (6.7 vs 5.1, P < .05) but not in male runners (5.5 vs 5.9). One comparison showed a higher joint surface area in male triathletes compared to controls (120 vs 110 cm², P < .01) but not in female triathletes (95.2 vs 88.9 cm²)</td>
</tr>
<tr>
<td>Narrative review</td>
<td>Prevalent OA-related surgery</td>
<td>Incident radiographic OA</td>
<td>The authors performed a MA for knee replacement. The MA included 2,172 adults from three case–control studies and found that runners (who ran for 1 year up to a lifetime) had lower odds of knee replacement due to OA than nonrunners (pooled OR = 0.46, P = .0004)</td>
</tr>
<tr>
<td>PM6R</td>
<td>Progression of radiographic OA</td>
<td>Cartilage thickness and volume</td>
<td>This narrative review summarized evidence related to running and risk for developing knee OA. The authors did not perform a qualitative synthesis of included studies</td>
</tr>
</tbody>
</table>

Recreational sports

A narrative review by Lefèvre-Colau et al. concluded that recreational and elite-level sports participation were not consistently related to the progression of radiographic or symptomatic OA. However, the authors highlighted certain sports (e.g., gymnastics, martial arts, soccer, ball games, etc.) that seemed to increase risk for progression of knee OA, although these relationships may be confounded by risk of knee injury for a given sport. Similarly, a systematic review by Driban et al. reported that elite-level participation in certain sports, including soccer, long-distance running, weightlifting, and wrestling, was associated with higher odds of knee OA (soccer: OR = 3.47, 95% CI 2.53-4.77, running: OR = 3.25, 95% CI 1.40-7.53, weightlifting: OR = 6.87, 95% CI 3.26-14.46, and wrestling: OR = 3.78, 95% CI 1.80-7.96), although again these relationships may be confounded by risk of knee injury. Lefèvre-Colau et al. suggested that team and/or power sports have higher rates of injury than endurance sports (e.g.,
long-distance running), which may explain why these two reviews have mixed findings regarding elite-level long-distance running and risk for knee OA.46

Thus, unlike walking and running, there are nuances to recommending participation in recreational sports. Namely, providers must weigh patient preferences against the risk for traumatic injury associated with a given sport (especially if the patient has previously been injured in that sport). Generally speaking, providers should encourage recreational sports participation so long as they also educate patients about practicing injury prevention.

Considering other risk factors when recommending PA
We advocate that all patients with, or at risk for, knee OA should receive a PA recommendation. However, providers must consider other risk factors for knee OA progression, such as obesity, previous knee injury, and structural knee abnormalities, that are inherent to this patient population.

Obesity
Obesity is a strong, independent risk factor for developing knee OA (risk ratio [RR] = 4.55, 95% CI 2.90-7.13).52 Thus, it is possible that

<p>| Table 3. Summary of Reviews That Examined Recreational Sports and Structural Progression of Knee OA |
|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>Review Details</th>
<th>Measure(s) of Physical Activity</th>
<th>Measure(s) of Structural Progression of Knee OA</th>
<th>Main Conclusion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lefevre-Colau et al.51 Critical narrative review Annals of Physical and Rehabilitation Medicine</td>
<td>Self-reported PA via questionnaire</td>
<td>Self-reported physician-diagnosed knee OA</td>
<td>This narrative review evaluated how risk of knee OA is impacted by: (1) general PA, (2) recreational sports participation, (3) nonelite long-distance running, and (4) elite sports participation. Seven out of 11 studies found that general PA did not increase risk for knee OA; two of the four remaining studies found that general PA only increased risk for knee OA in men.</td>
</tr>
<tr>
<td></td>
<td>Self-reported sports activities via questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiographic knee OA</td>
<td></td>
<td>Three out of eight studies found that recreational sports participation did not increase for knee OA; four of the five remaining studies found that sports participation only increased risk for knee OA for certain sports (e.g., gymnastics, martial arts, soccer, ball games, etc.)</td>
</tr>
<tr>
<td></td>
<td>Surgery due to knee OA</td>
<td></td>
<td>Four out of five studies found that nonelite long-distance running did not increase risk for knee OA; the remaining study found a higher number of osteophytes in female runners compared to controls (4.7 vs 2.3, P < .01)</td>
</tr>
<tr>
<td></td>
<td>Knee replacement</td>
<td></td>
<td>Three out of seven studies found that elite sports participation did not increase risk for knee OA</td>
</tr>
<tr>
<td>Driban et al.47 Systematic review Journal of Athletic Training</td>
<td>Self-reported sports participation</td>
<td>Prevalent OA</td>
<td>This SR included 15,928 adults from 17 studies. The authors performed a quantitative synthesis of included studies, with a total of 14 comparisons between exposed and nonexposed groups after aggregating data by sport. A “significant” association exists between sport participation and prevalent OA for: Elite and nonelite soccer, elite long-distance running, elite weightlifting, and elite wrestling (ORs ranged from 3.25 to 6.87, all were statistically significant). An “unclear but possible” association exists between sport participation and prevalent OA for: High School American football, elite throwing, elite handball, elite cross-country skiing, elite ice hockey, and elite orienteering (ORs ranged from 1.58 to 9.17, none were statistically significant). An “unclear but unlikely” association exists between sport participation and prevalent OA for: elite basketball, elite boxing, elite shooting, and elite track and field (ORs ranged from 0.87 to 1.34, none were statistically significant). The authors presented data by Roos et al.57 that showed uninjured controls/athletes had a lower prevalence of knee OA than injured controls/athletes (1.3-10.7% vs 12.5-33.3%), depending on the level of sports participation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loss of joint space width</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Progression of radiographic OA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
adults who are obese and increase their PA may be at risk for structural progression of knee OA. For example, a narrative review by Fransen et al.\(^\text{15}\) cited as an original study by Martin et al.\(^\text{20}\) found women who were obese and had the highest PA (unstructured) had higher odds of incident knee OA (OR 1.8, 95% CI 1.5-2.2).\(^\text{20}\) This is not because PA itself is harmful; obesity is a modifiable risk factor that providers can address by encouraging weight loss.

Egan and Menten\(^\text{28}\) and Bosomworth\(^\text{50}\) clarified that providers should not think of weight loss as a \textit{prerequisite} for patients to engage in PA\(^\text{18,20}\); rather, patients can achieve weight loss \textit{in conjunction with} PA, i.e., start exercising and eating a healthy diet at the same time.\(^\text{53}\) Patients who are obese can engage in moderate intensity, low-impact PA such as brisk walking. Several reviews cited as the original study by Felson et al.\(^\text{31}\) found adults who were obese could recreationally walk at least 6 miles week\(^{-1}\) without increased risk of joint space loss (OR = 0.96, 95% CI 0.55-1.65) or incident knee OA (OR = 0.95, 95% CI 0.55-1.62) over a 9-year period.\(^\text{31}\)

\begin{itemize}
 \item Previous knee injury and other structural abnormalities
\end{itemize}

Several reviews\(^\text{41,46,47}\) highlighted that previous knee injury is a strong, independent risk factor (and often a confounding factor) for developing knee OA (pooled OR = 4.20, 95% CI 3.11-5.66).\(^\text{56}\) Furthermore, Driban et al.\(^\text{47}\) presented the results of an original study by Roos et al.\(^\text{27}\) that showed athletes/nonathletes with a previous knee injury consistently had greater odds of knee OA than athletes/nonathletes without a previous knee injury (12.5-33.3% vs 1.3-10.7%).\(^\text{57}\) Thus, when recommending PA, a previous knee injury may alter the knee joints’ response to PA.\(^\text{41,46,47}\) As with obesity, the knee injury still likely acts as the “driving force” behind structural progression,\(^\text{16}\) not PA itself. However, unlike obesity, a previous knee injury is nonmodifiable.

Reviews by Bennell and Hinman (2011)\(^\text{58}\), Hansen et al.\(^\text{39}\), and Miller\(^\text{40}\) suggest that providers should (1) recommend supervised PA, with monitoring of the patient’s response to a gradual increase in PA and (2) encourage the patient to allow adequate recovery time between bouts of PA.\(^\text{39}\) These strategies are intended to minimize their risk of reinjury and/or exacerbation of a previous injury. Furthermore, a review by Lim et al.\(^\text{53}\) suggests that these strategies also apply to patients with other structural abnormalities such as a meniscal pathology, BML, or significant varus or valgus frontal knee alignment.

\begin{itemize}
 \item More studies are needed that examine PA and structural outcomes in knee OA
\end{itemize}

While more evidence has become available, a recent review by Kraus et al.\(^\text{21}\) highlighted the continued need for high-quality studies to elucidate the effects of PA on the structural integrity of the knees.\(^\text{58}\) First, future studies should leverage activity monitors for objective, accurate measurement of PA. Older studies that relied on self-report measures of PA (e.g., questionnaires) had mixed findings, including that PA could be harmful to the structural integrity of the knee joint.\(^\text{58}\) In contrast, recent studies used objective measures of PA and found that PA had no effect on the knee joint.\(^\text{17}\)

Second, studies should attempt to isolate the effects of joint injury from PA,\(^\text{48}\) as joint injury alone increases risk for incident knee OA and rapid knee OA progression.\(^\text{59}\) As well, studies should examine whether the consequences of a previous joint injury might be attenuated by regular engagement in moderate PA.\(^\text{42}\)

Third, future studies should consider the potential “U-shaped” relationship between PA and knee OA.\(^\text{54,55}\) That is, adults with very low PA,\(^\text{56}\) as well as adults with very high PA, may have the greatest risk for structural progression. Meanwhile, adults with moderate levels of PA may reside in the “sweet spot” and have the lowest risk for structural progression.\(^\text{16,92}\)

Most studies fail to consider this “U-shaped” relationship when they select adults with low PA as their referent group. Instead, adults with moderate PA (i.e., the “sweet spot”) may be a more appropriate referent (unexposed) group. By selecting those with moderate PA as the referent group, more studies can explore the consequences of low PA and formally test the existence of this “U-shaped” relationship. Interestingly, this “U-shaped” relationship is already supported by a meta-analysis of animal studies\(^\text{9}\) and two recent cohort studies in humans.\(^\text{61,62}\)

\begin{itemize}
 \item Future research should determine if meeting PA guidelines preserves the structural integrity of the knees
\end{itemize}

The WHO guidelines provide important PA targets for all adults, with and without knee OA. While there is unequivocal evidence that meeting these guidelines (1) promotes cardiovascular and metabolic health and (2) preserves muscle and bone density, there is a need for evidence that shows meeting these guidelines can preserve the structural integrity of joints (including the knees). Current evidence only shows that meeting PA guidelines does not worsen knees;\(^\text{51}\) while providers can use this knowledge to address patients’ concerns about “wear and tear,”\(^\text{14}\) there may be greater incentives for adults to become active (i.e., PA actually preserves the knee joint). Once compelling evidence becomes available to show that PA prevents (or at least delays) the onset of knee OA,\(^\text{41}\) it might encourage more adults to be active and benefit countless adults worldwide.

\begin{itemize}
 \item Conclusion
\end{itemize}

To conclude, there is consistent evidence that common forms of PA (walking, running, and certain recreational sports) do not increase risk of structural progression of knee OA. These forms of PA may actually be beneficial to the knee joint, although more studies are needed to support this notion. Nevertheless, healthcare providers can refer to the WHO guidelines to provide a general PA recommendation to patients with, or at risk for knee OA. Providers can refer to this overview to make a more specific PA recommendation that considers how other risk factors (obesity, previous knee injury, or other structural abnormalities) relate to structural progression of knee OA.

There is still a need for high-quality studies that examine PA and structural outcomes in knee OA. These studies should elucidate how PA may be beneficial to the knee joint, thus providing additional incentive to adults who are not regularly active. As well, additional studies can support the notion that meeting PA guidelines preserves the knee joint, which, in turn, may reduce the global burden of knee OA.

\begin{itemize}
 \item Supplementary material
\end{itemize}

We searched the PubMed database using the following search strategy: “exercise [MeSH Terms] AND osteoarthritis, knee [MeSH Terms].” MeSH is an acronym for “Medical Subject Headings” and refers the controlled vocabulary of the National Library of Medicine. Every article in PubMed is indexed using a set of MeSH terms.

A MeSH term is a heading that exists in a hierarchy; each MeSH term includes several related entry terms beneath it in the hierarchy. Thus, when a MeSH term is searched, PubMed retrieves citations that have been indexed with the MeSH term and/or its related entry terms. The MeSH term does not need to be the major topic of the citation but must be included in the set of terms used to index that citation.

For example, the MeSH term “exercise” retrieves citations that were indexed with the following terms: “acute exercise,” “aerobic exercise,” “exercise training,” “exercise, aerobic,” “exercise, isometric,” “exercise, physical,” “isometric exercise,” and “physical activity.” The MeSH term “osteoarthritis, knee” retrieves
citations that were indexed with the following terms: “osteoarthritis of knee” and “osteoarthritis of the knee.” Our search strategy, which combines “exercise” AND “osteoarthritis, knee”, therefore retrieves citations that are relevant to both MeSH terms.

We restricted our PubMed search by “Article Type” to include only (1) meta-analyses, (2) reviews, and (3) systematic reviews. We also restricted our PubMed search to retrieve only citations that were originally published in English from 2005 to 2020.

First, we reviewed the abstract of each citation retrieved in the PubMed search (n = 114). We excluded a citation if the abstract clearly indicated: (1) the review did not include studies in adults with (or at risk for) knee OA, (2) the review did not mention a specific structural outcome of knee OA (e.g., radiographic or MRI measures), and/or (3) the review was not originally published in English or was a duplicate. Once we definitively excluded a citation based its abstract (n = 74), we did not search for a full-text version of that citation.

If we did not exclude a citation based on its abstract, we searched for and performed a detailed review of the full-text version of the citation. We excluded full-text versions of citations for the same three reasons listed above: (1) the review did not include studies in adults with (or at risk for) knee OA, (2) the review did not mention a specific measure of physical activity, or (3) the review did not mention a specific structural outcome of knee OA (e.g., radiographic or MRI measures).

Peer-review: Externally peer-reviewed.

Acknowledgment: The authors would like to acknowledge Steven Voinier for his help in preparing this manuscript.

Declaration of Interests: The authors have no conflicts of interest to declare.

Funding: This work was funded, in part, by the Rheumatology Research Foundation and by a Doctoral Fellowship Award from the Graduate College at the University of Delaware.

References

36. Oiestad BE, Quinn E, White D, et al. No association between daily walking and knee structural changes in people at risk of or with mild knee osteoarthritis. Prospective data from the multicenter osteoarthritis study. J Rheumatol. 2015;42(9):1685-1693. [CrossRef]

46. Miller RH. Joint loading in runners does not initiate knee osteoarthritis. Exerc Sport Sci Rev. 2017;45(2):87-95. [CrossRef]

63. Ding C, Jones G, Wuuka AE, Cicuttini F. What can we learn about osteoarthritis by studying a healthy person against a person with early onset of disease? Current Opinion in Rheuma-tology. 2010;22(5):520-527. [CrossRef]

64. Roddy E. Evidence-based recommendations for the role of exercise in the management of osteoarthritis of the hip or knee—the move towards consensus. Rheumatology. 2005;44(1):67-73. [CrossRef]